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TECHNICAL MEMORANDUM X-53459
VARTATIONAL PROBLEMS AND THEIR SOLUTION BY THE ADJOINT METHOD
SUMMARY

A variational problem typical of those encountered in flight mechanics
is posed. The adjoint technique is then developed in a manner to indicate
its application to general two-point boundary value problems. It is then
specifically applied to the variational problem, Finally, the practicality
of the adjoint method is illustrated by solving three typical problems of
exo-atmospheric flight and one problem involving an ascent through the
atmosphere to low earth orbit.

I, INTRODUCTION

Many flight mechanical problems require that some "cost" criterion
be extremized. A typical criterion is that the scientific payload of a
rocket booster be maximized. Besides maximizing the payload, certain
functional relationships among the "state" variables of the vehicle must
invariably be satisfied at the end point. The calculus of variations, a
branch of classical mathematics under development for over 250 years,
forms the basis for handling optimization problems of this type. Unfor-
tunately, this mathematical treatment leads to two-point boundary value
problems which in themselves are important stumbling blocks to a straight-
forward application of the theory. The adjoint method has been developed
as a tool to solve the two-point boundary value problem which in turn
allows the ideas and results of the classical calculus of variations to
be applied in a great variety of interesting and practical problems. The
remainder of this text is devoted to formulating the variational problem,
developing the adjoint method of solution to the split boundary value
problem, and applying the resultant theory numerically to some typical
trajectory problems. No claim for mathematical rigor is made. Necessary
continuity requirements and the existence of derivatives of the required
order are assumed. The treatments and developments of the adjoint method
are for the most part formal in nature but their utility and worth have
been borne out by the solution of a number of practical problems.




II. THE VARIATIONAL PROBLEM

Consider a set of ordinary first order differential equations:

"
I

fi(xl, v s Xps UL, eel u,) i=1, ..., m (2.1)

fi(x,u)

where the x, defining the "state" of the system are the dependent variables
and the ul, ... , up are the control or forcing variables which are implicit
functions of t, the independent variable, which here is taken as time., A
solution of this system in an interval to £t £ tg is given by m functions,
x;(t), and n functions, uj (t), such that their substitution reduces equa-
tions (2.1) to'identitles The system is said to have n degrees of freedom.
The state values at t,, together with t,, are termed the initial boundary
and the state values at ty together with tg are called the terminal boun-
dary. The variational problem consists of extremizing a functional

tf
J = g(xl’ ceey xm,)tf+ f fo(xl’ ey XpsUa, s un) dt
% (2.2)
tf
= ,@(X)t + f f_(x,u) dt
tO

subject to the differential constraints (2.1) and the terminal constraints

Y, (X1, eeey ), - E =0 ¢£=1, ..., q (2.3)
2 1 xﬂltf 2
q=m+1

where the E, are given constants. Employing the method of Lagrange, an
extremal requires that the first variation of the following functional
vanish:




tf

J = (X3, -.e5 Xy) + f (X1, ..., x Uy, ..., u,)
tf (o] m

%

+ 9 <%i(x, R L T u) - i;)] dt + vz[wz(xl, e xm)tf]

(2.4)

where it is understood that a repeated subscript implies summation over

its range, the q;(t) are Lagrange multiplier functions, and v, are Lagrange

multiplier constants.

The vanishing of &J leads to the following necessary conditions:

) &1)
g, =- & 1=1, ..., m (2.5)
* axi u,q
g—f}) =0 j=1, ..., n (2.6)
] X,q
where
Hx,u,q) = £,(x,0) + q €, (x,0) @.7)

is the Hamiltonian,

t

3 i
q,(tg) = 5%): - v, 3;5) (2.8)
f

avﬂ
[fo(x,u) + qifi(x,u)] = [vz 5S¢ %g] . (2.9)

[N
o
[
-
L)
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-
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Notice that H is a constant of the system since

3‘?=§—5’> Kt S q'+gi> by
i‘u,q 93 x,u T uj X,q 3

Substituting (2.1), (2.5), and (2.6) further yields

dH - . . . . .
— - + = - =
It qixi + fiqi 0 qixi + qixi 0.

The necessary conditions given have implicitly assumed that the
initial state boundary is known. Equations (2.5) and (2.6) are the
usual Euler-Lagrange equations. Equations (2.8) and (2.9) express the
transversality conditions at the terminal boundary. A solution to the
variational problem consists of finding functions x(t), u(t) and q(t)
in the interval ty = t = tf such that equations (2.1) and (2.5) are
reduced to identities, equation (2.6) is satisfied and the boundary con-
ditions, equations (2.3), (2.8) and (2.9) are satisfied. The u(t) are
implicitly defined by (2.6) which means that solutions of the differential
system (2.1) and (2.6) are determined by 2m + 2 boundary values of which
m + 1 values are provided by the assumption that the initial state bound-
ary 1is known and the remaining m + 1 values are obtained from the
m+ q + 1 terminal conditions, (2.3), (2.8), and (2.9) by eliminating
Vi, eaey V F Thus, an extremal requires the solution of a two-point
boundary value problem. The nature of such a problem, as well as the
fact that (2.1) and (2.5) are normally highly nonlinear, means that an
analytic solution is rarely possible and a numerical solution must be
sought. Numerical solutions require that one complete boundary be known.
The classical technique of solution is to guess the unknown initial bound-
ary values and to adjust them until the terminal boundary conditions are
satisfied. This transforms the split boundary value problem into an init-
ial value problem, The manner of solution described is called the indirect
method since the control variables are obtained implicitly as functions of
time and are not specified explicitly and then modified in a manner such
that (2.3) is satisfied while simultaneously extremizing (2.2). Steepest
descent techniques are of this latter type which are called direct methods.

*
If (2.3) are m in number, then m of (2.8) and (2.9) are superfluous.
If (2.3) arem + 1 in number, both (2.8) and (2.9) are unnecessary.




ITI, THE ADJOINT SOLUTION TO TWO-POINT BOUNDARY VALUE PROBLEMS

Consider a differential system of the following type:

2, = Fo(z1, -oos Zy) Q=1, ..o, 2 3.1)

Fa(z).

The Fy are supposed to be functions of the differential dependent variables
only and the comments concerning (2.1), except for the control variables,
are applicable. Let

Bz () = z (t) - z,(t), 3.2)

where Zy(t) is a nominal solution of (3.1), zy(t) is a varied solution
and the concept of a variation symbolized by & is discussed in Appendix I.
The variations in z(t) obviously induce (to first order) a variation in
the Fo(t) as follows:

OF
— - - —-a =
&ﬂz = Fa(z + Bz) Ea(z) ZB 5zB. =1, ..., 2m (3.3)
Combining (3.1) and (3.3) yields
OF

or
oF
d __a
It (SZ(I) = —BZB SZB 3.4)

where the interchange of d/dt and 5 are justified in Appendix I. The




equations adjoint to (3.4) are defined as

oF
By = - gipﬁ, %Lp=1, ..., 2n (3.5)

where the py are the adjoint variables. The usefulness of the adjoint
variables (also called the influence functions) is indicated by the
following:

d . d
at Py 925) = Py, B2, + b, gt (82,

OF OF
_-_'B o
dz,, Pg B2, * by, azB 524 (3.6)
=0

where (3.4) has been substituted and the fact that o and B are dummy sum-

mation symbols has been used. Since P 92y is a constant of the system,
obviously

Py, Sza>t = p, Sza>_ , 3.7)

where Ef is the nominal terminal time. Herein lies the usefulness of the
adjoint variables; they relate variations at the nominal terminal boundary
to variations at the initial boundary. Again let boundary conditions of
the following form be imposed at the initial and terminal boundaries:

MEY (), =0  i=1,...,0p (3.8a)

(o]

o (e =0 J=p+l, ., m-p+l (3.8b)




Boundary values on the adjoint variables have not been imposed

A

meanlnﬁful interpretation can be attached to the following choice for
t

the j

As shown in Appendix I, at the nominal terminal time,

where dz

&) Sz

i = | .
pO! G]E B [pa

£

e

te o

p

1,

+ 1,

dzo:;>E = <§za + za dt>E ’
£ f

(dza -z, dt)]_
te

Substituting the relations

into (3.11) results in

30D
ou

ceesy 2m - p + 1
.s 2m

o is the total differential change in zy at Ef.

|

. (3
dQ(J) = o0 dz
zOl a
L) _ aa‘J’ :
& oz,
o) 5, } . [d9<j> YC) dt]_ .
" i

set of boundary values at the nominal terminal time:

& )) BQ(J )> ]

(3.9a)

(3.10)

Thus,

(dza - éa dt):]E . (3.11)

£

(3.12)

(3.13)



Substituting (3.13) into (3.7) yields

(3 - (3) _ (3
pa SZQJ = [dQ NP 9} J dtJ_
to tf

or

péj) 6ZO‘L + p® dt:IE = dQ(j)JE . (3.14a)
o] £ f

p of the Sz)to are eliminated in (3.14a) by using (3.8a). Assuming the

dQéJ) are specified, (3.14a) represents 2m - p + 1 equations for one
f
unknown dtg and 2m - p unknowns, Szi)t . Equations (3.l4a) are generated
o)

by 2m - p + 1 integrations of the adjoint equations. This number may be
reduced by one if the nominal terminal time is determined by one of the
terminal boundary conditions being satisfied, say Q(zm-p+1)(z)E

Then,

_ (2m-p+1)
dﬂ(2m p+1)(Z)E _ of

£ o £

If the adjoint equations are integrated with boundary conditions,

T L (2m-p+l) - :
Q t
f
a straightforward calculation shows that (3.l4a) reduce to
p (3 5, :] = dQ(J)} . i=1, ..., 2m-p (3.14b)
o a -
to tf




Of course, these last operations are not possible if the designated
terminal boundary condition cannot be satisfied from the initial boundary.

The implementation of the adjoint method is an iterative process.
This means that each successive step is dependent on the previous step.
The process is said to have converged when the differential equations and
the terminal boundary conditions are reduced to identities by the solution
functions. When ty is fixed, a nominal solution z(t) is generated by
assuming a nominal Ef, guessing the missing initial boundary values, and
integrating (3.1) forward in time until t = tf. Normally the

dn(j)> £0,
Ef

and changes in Ef and the free initial boundary values are necessary.
These changes are computed by using the initial conditions of (3.92) to
integrate the adjoint equations (3.5) backward in time until t = t,.
This yields the

p (j) (to)

needed for (3.l4a). Since (3.1l4a) is generally the result of a linear
treatment of a nonlinear system, it is unreasonable to expect it to pre-
dict the whole correction necessary during the early steps of the con-
vergence process. Consequently, only fractional portions of the terminal
boundary condition violations are used in (3.l4a) initially; i.e., the

NG))

te

are replaced by
ckdg(3)>_ , k=1, ..., 2m-p+1
e

where 0 < Ck = 1, As convergence is attained, the Cyx are increased
since the linear approximation is becoming better and better. Using these



deQ(j)) ,
te

(3.14a) is used to calculate the new initial boundary as

>new >old
zZ, =z, + 8z.>
e Ve, e,

o}

and the new terminal time as

-nhew -o0ld -
£ tf +dtf.

. R . . -new
The state equations are again integrated forward in time until t = tgf
Now the

s\ W
dQ(:))

-New
te

will have either increased or decreased.

(1) 1If they have increased, the changes calculated are too
large and the linearity assumptions have obviously been
violated. This is corrected by halving the computed
changes and reintegrating the state equations forward.
This secondary iteration is done as many times as required
to decrease the terminal boundary condition violationms.
When they have finally been reduced, the adjoint equations

are again integrated backwards according to the previous
step.

(2) 1If they have decreased, the adjoint equations are immedi-
ately integrated backwards and the previous step repeated.

This process continues until the terminal boundary conditions are satis-
fied to within some tolerance. The secondary iteration described above
is essential since it can reduce the number of times the adjoint equa-
tions are integrated. This results in a large time saving since these
equations are usually rather lengthy and involved.

10




IV, THE ADJOINT SOLUTION OF THE VARIATIONAL PROBLIM

Seeking to limit the scope of the discussion while at the same time
illustrating the application of the adjoint technique to a problem of
some interest, a particular type of variational problem is considered
here: the time minimal problem. The functional to be minimized is,
thus,

te
J = f dt =t - t, (4.1)

i.e., fo(X15+e.5 Xm,u3, ..., Uy) = 1. Further assumptions are that the
initial boundary and the terminal boundary (except for tg) are known.

The problem, then, is to move from an initial known state to a terminal
known state in the least time. In order that the scheme outlined in Sec-
tion III be applicable to this variational problem, it is necessary that
the dependence of the differential equations on the control variables be
removed. This can be done in principle by using (2.6) where the relations
are made explicit as

uj = uj(x,q). j=1, ..., n (4.2)

The differential equations of this variational problem become

:'ci = fi(x, u(x,q)> 4.3)
< Bfk
.- = . ] (X,CI), q.) =-9q, T k’l = 1) ce.y M (4-4
T8 'x 'u k ox j=1, ..., n
of.
qi[gu'l‘ = 0, (4.5)
k|

subject to the boundary conditions

]
-
A

- E =0 2 eees G (4.6)

te

11



oV
[qi +tv, i]t =0 %.7)

[1 + qifi<x, u(x,q)>} = 0. (4.8)
t

£

Equations (4.3) and (4.4) can be written in the form (3.1) by making the
identifications

Zy =Xy, zZ,, = fi a=1, ..., m .9)
2, =450 2, =8y- a=m+1, ..., 2m
Then,
éa = Fa(x,q). a=1, ..., 2m,

Boundary conditions (4.6), (4.7), and (4.8) are m + 1 in number if the
Vi1, ..., Vo are eliminated and correspond to (3.8) which arem + 1 in

number since the initial state boundary has been assumed known. Con-

sequently, the formulation of Section III is applicable. The adjoint

equation (3.5) may be conveniently rewritten with indices varying from
1 tom as

of og
.X k) X k q
Py = - <) Py - P (4.10a)
WA A

of og
.q _ k) x k q
pd = - pX - p (4.10b)
Lo wm)Rw,),

where the superscripts have been used to indicate the correspondence
between the subscripts of (3.5) and the identifications in (4.9).

12




To calculate the partial derivatives in (4.10), the following differentials"

of (4.2), (4.3) and (4.4) are required:

of, af i,k=1, ...,
B f) dxk 55— du j=1, ..., n
d %y d ag{) d %5
g, = 5x— + = u, + <— dq, .
* axk u,q & auj X,q aqk k

Substituting (4.11) into (4.12) and (4.13) and rearranging yields

S0+ 50), 50) Jon + [30), 3) ] e

%; = [%l,q ' %g%)x,q ;L:kl q] Tt [;;lax,u ' %ii-l,q %)x

(4.11)

(4.12)

(4.13)

(4.14)

]

(4.15)

By holding x or q constant as required, (4.14) and (4.15) can be used to

calculate the partial derivatives in (4.10). The results are

-, s S [, ), s
- B R [ s, =

Qe
|

e o

(4.16)

(4.17)

13



The only unknowns in the last two equations are

%4 s
and .
axi q aqi X

These partial derivatives may be calculated from (4.5) as follows:

afi
hr(x,u,Q) =455 < 0
rx

oh oh oh_
dhr=5—- dxk+aT' du, + <
Xk u,q i“x,q J e X,u
Holding q constant in (4.18) yields
ahr + ahr au. - 0 i’k = ]_’ cesy M
., du, ox > L
i“u,q ¥x,q Ti/q jbr=1, ..., n

which represents n equations in the unknowns

o
ox,
i

q

Consequently, if the array

oh
g‘£ -
“i/%,q

qu =

(4.18)

(4.19)

where r is the row index and j is the column index - is nonsingular,

-1 Bhr
| =

du, oh
_.1> - [__r>
axi q auJ’ X,q i‘u,q

14

(4.20)



Holding x constant in (4.18) yields

ahr> ahr> au>
+§— —l) =90
E x,u uj X,q aq]’. b 4

or

&1. -]
s, - [, ] %)

(4.21)

With the aid of (4.20) and (4.21), the adjoint equations (4.16) and

(4.17) become

X _ afk _ afk ahr o ahr: X
S = A ks A
u Jx J x,q 1¥u,

JXx,q 1"u,

-1
. afk [Bhr :l Bhr px

] IE% x,u ) éj)x’q [;I?X,q:]-l %)x,;] pz'

(4.22)

(4.23)

15




Equations (4.3) - (4.8), (4.22) and (4.23) can be expressed more succintly
in terms of the Hamiltonian which, for this time minimal problem, is

H(x,u,q) =1 + q.f.. (4.24)

These equations can then be written

. _ OH -
Xi = aqi>x’u (4025)
. OH
i, = - B_Xi.>q u (4.26)
JoH -
$> = Q 4.27)
7%,q
v, ) - Eﬂ> =0 (4.28)
t
£
Bu_;ﬁ
q; + v, §;j>t =0 (4.29)
i/t
H), =0 (4.30)
£
R T = ]‘l P X
i Bxi qu X,u,q Buj gy u,%,q _Buj Bur ., % Bxi Bur x,4,u k

I > L o > 1 O°H J 521 > pd
My Mu,quu O M, q,x L0 g Oy B0 g |

1

16




5= | OB > [ 3°H l(l O%H oX
i Su, gak 0,x,q 6 du q,x 5u Bq k

J 1u,q,Xx
|, o _O%H }: 2n 1 &n ) o3
aqiaxk q,u,x 5 ax u,q,x auj aur ,g,X aur aqk.u,q,x k?

(4.32)

where the nonstandard triple subscript notation indicates, for example,
that

9%H >
Bxiaqk x,u,q

is to be evaluated by finding the partial derivative of H with respect
to qi holding x and u constant and then finding the partial derivative
of this result with respect to xj by holding u and q constant. Equa-
tions (4.24) - (4.32) are convenient when an analytic derivative cal-
culator such as IBM's FORMAC system is available, since all differential
equations are essentially generated by the Hamiltonian,

A numerical solution of these equations proceeds as discussed in
Section III and will not be repeated here. However, several modifica-
tions of the basic variational problem will be mentioned here. First,
inequality constraints on the state and/or control variables can be
introduced and handled by the adjoint techmique, This will be the sub-
Ject of a later report. Second, it can happen that some or all of the

's in (4.29) are all but 1mp0531b1e to eliminate analytically. If

tgls happens they can be made part of the convergence process. Assum-~
ing all q of the vy's are to be found suppose q additional differential
equations of the form ¥; = 0, ..., ¥, = 0 are added to the basic set of
state differential equations. Their solutions are, of course, constants
whose correct values are those which reduce (4.29) to identities. It is
easily verified that the Lagrange multipliers and adjoint variables intro-
duced by these new equations are also constants., Consequently, numerical
solutions of additional new differential equations are not required. How-
ever, formally, there are now a total of m + 2q + 1 terminal conditions of

17



which q are of no interest; i.e., q of them are the final values of new
Lagrange multipliers which do not enter into the problem solution at all.
Therefore, there are m + q + 1 terminal boundary conditions to be satis-
fied. This requires q more integrations of the adjoint equations where
boundary conditions are given by

(z)=aa“) L=2m~-p+1, ..., 2m-p+1+¢(
P dz,
a a

=1, vve, 2m + q

and (3.l4a) can again be used to calculate changes in the guessed v,'s.
Lastly, the adjoint technique can be used to calculate controls for
neighboring extremals which can be useful in guidance analysis.

V. EXAMPLES

To reduce complexity, the differential equations of motion of the
flight mechanical problems considered for these examples will be written
in two dimensions. Further, the reference planet is considered spherical
and thrust levels are constant. Under these conditions, the equations
governing the motion of a rocket vehicle operating in a vacuum (i.e.,
exo-atmospheric) can be written

¢ =L e
v=f,= m €08 & - T cos 9
L] \
§ = £, = i% sin 0 + <?g%g - %) v sin 9§ (5.1)
T =fs=v cos 9
ﬁl=f4—k

where

F is the rocket thrust,

GM is the product of the universal gravitational constant
and the reference planet mass,

18




v is the velocity,
m is the instantaneous rocket mass,
k is a given constant,

r is the distance of the rocket from the center of the
reference planet,

4 is the i)ngle between the radius vector ¥ and the velocity
vector v,

Py
« is the angle between the thrust vector F and the velocity
vector V,

Geometrical relations between these quantities are illustrated below.

Flight Path

<

-
r

.“‘

There are a total of 8 variables, namely, r, v, 9, m, F, @, k, and @

of which 3 - F, GM, K - are known constants, Since v, 9, r, and m are
determined from (5.1), there is one free variable @, the control variable,
which can be varied to minimize the time of transfer between the given
initial state and the given terminal state. In the development of the
Euler-Lagrange equations and the adjoint equations, the following corre-
spondences for the subscripts and variables are made:

1 =>v X =>V
2 =9 Xo =>4
3=>r Xz =>7T
4 =>n X, =>m

19



which are read. Subscript 1 is replaced by v, subscript 2 is replaced
by 4§, etc, The Hamiltonian (4,24) becomes

'F GM F oM 1
H=1+qv )Lacos oz--?zcos 9 +qﬁ {m—vsma-!-<-ﬁz_;>v sm'a_

+ qr(v cos ﬁ) + qu. (5.2)
The Euler-Lagrange equations (4.26) are
q =-—5F sin(X-*-GMsin»S-i--l-sinqS\ ~ cos 9
q'v mv rgz r ) qﬂ qr
_ GM . M _ 1 .
q@—-—-gs1n»8qv <—;%-g r>vcos®qﬁ+vsm~8qr (5.3)

l1yv sin 9
r

T re % v 4 Ve r 15

o]
1}

. _F cos O +Fsina
A =" 9y

The equation for the control variable (4,27) is

F . F _
--msulocqv+Ier cos ozqﬁ—O

or

_ 3y
tan ¢ = ——, (5.4)
qu
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The terminal boundary conditions (4.28)

Q(l) =V - Vf>

t

Q(z) =4 - ef>

3) _ )
f =r - R

ft

fl

The terminal boundary conditions (4.29)

+ v > =0
th

n
o

qv
q0 + v

are

and (4.30) are

(5.5)

(5.6)

(5.7)

(5.8)
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Since (5.1) and (5.3) are a total of eight differential equations, ten
boundary conditions are required., Five of these are given by the assump-
tion that the initial boundary is known., Apparently, the remaining five
come from (5.5) - (5.8). Equations (5,5) must be satisfied so that the
remaining two conditions can be picked from (5.6) - (5.8). Actually,
equations (5.6) yield no new information. Hence, the five additional
boundary conditions occur on the terminal boundary and are given by
(5.5), (5.7) and (5.8). A solution of the complete differential system
proceeds by guessing Ef and the missing initial boundary values and vary-
ing them until the integration of (5.1) and (5.3), using (5.4) for the
control, satisfies (5.5), (5.7) and (5.8) at some ty = tg.

In the just outlined solution procedure, Ef and all four initial
multiplier values were needed. Two artifices can be used to reduce
these five initial guesses to three guesses, namely, Ef and two of the
initial multiplier values. This can be done by noting that, first, the
Euler-Lagrange equations are homogeneous in the multipliers and, second,
that the first three of the Euler-Lagrange equations are independent of
the fourth, Homogeneity means that for any solution set {(qv(t), qe(t),
qr(t), ap(t)}, {kqy(t), kqg(t), kq.(t), kqp(t)} is also a solution set
where k # 0 is any real number, Consequently, for the multipliers solv-
ing the problem, there exists a k such that one of their initial values
may be fixed at some number N. (N is often given the value l.) For
example, A(ty) # 0 of a solution set becomes 1 if k = 1/A(ty). Requir-
ing this condition at the outset reduces the initial guesses by 1. The
second observation above, along with relaxing the requirement that (5.7)
be satisfied, means that the initial value of qp(ty) may be fixed at
some convenient value, say 1, The motivation for doing so is that now
there are three arbitrary parameters, Ef, 4y (ty) and qg(to), say, to be
picked (if a solution exists) such that the three boundary conditions
(5.5) are satisfied. This handling of q introduces the simplification
that now equations (3.l4a) of the adjoint technique are three in number
and easy to solve for the required initial correctioms., Additionally,
qm(t) can still be used in computing the integration constant H which
is an aid in checking the accuracy of the integration algorithm. (Note
that now H # 0.) The multiplier q could have been eliminated entirely
from consideration, since by assumption m is a known function of time,
but this would have introduced an explicit time dependency into the state
differential equations which is not allowed in the formulation in Sec-
tion II, (However, t can be introduced explicitly into (2,1) and (3.1)
with no resultant difficulty in the analysis whatever.) It should be
remembered that these contrivances for reducing the initial guesses from
5 to 3 are for convenience and expediency in solving the problem and
that formally all five should be used to satisfy (5.5), (5.7) and (5.8).
(It could be said that the three-guess solution finds incorrectly scaled
multipliers while yielding the correct control program and the minimum
transfer time.)
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The adjoint equations (4.31) and (4.32) become, after some obvious
cancellation and rearranging (pf; and pgl are ignored for the reasons given
above):

tx=- 1 __F_ Py a X+ F -
v q_vvcos o¢+q13 sin a/ \mv sin cos @ Py mv= sin &

GM__. sin 3§ f 1 F 2 X
t iz sin d + = +q6\g_vvcosa+qﬂsina><m—vz>c°sa] Ps

2q
X S(F . GM .
- [cos B] P, + [Tv <m sin ¢ + 72 sin «3>

+ Q§ <v q cos oz1+ sin @ qQ <E§_5> cosza:' p‘(} ) l:qﬁ (%2 * %> cos 9

o rin o] [ (B e 2]
e [B e [ Do ] e

- [q-é)(r—(zm;z‘*%) cos §+qr sin z‘):l p3+[qv%cos 3

- qﬁ<;%z-%>vsina-qrvcos G:lp%- [qv%(s;-u-sinﬁ
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R 2GM X 2GM 1\ v sin 9| x sin 61 q
x o o |&2 - X L)
v [ o o] o} [ (B - D) o] [0 D) 0

2q, GM
3 . 2GM 1\v cos 9| q
- [ 3 oin 3+ Ls <?zv-2 r> r ] P3s

oM _ 2 bq, M
+[qa<;§5-r1>v 31n13-——r—4—-cos «Sjlp . (5.9¢)

H O

~q__ 1 & : 02 X
Py © [(qv v cos a+qg sin Oé) <m> sin Ol] Py

L i X GM q
+ l: T, v s G ¥ 4 5in Ot> (F/m) sin  cos o::] Py +[?2 sin '8] Pg

26M 1 F q
[—5— cos 13] P, + [qa <qv N cos o F q@ sin 0t> <mv> sin @ cos a:] P,

(5.9d)

1
g l:( 1 ) X
p: = - (F/m) sin o cos a| p
3 qvvcosa+q631na _| v

1 _F_' 2 X F .
[(qv v cos ¢ + qg sin oz) <mv> cos a:' Py l:mv2 sin

GM 1 1 F 2 q
+<W+r>sm6+q6<qvvcos %+ qp sin (x><—2mv>cos a] P,

[—2‘72- j Vv cos 19:, pﬂ3 l'< 2 + ;1'2>v sin '8:' pg. (5.9¢)
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oq_ q ] q
b, = [cos 9] P, - [v sin 3] Py - (5.9£)

As mentioned earlier, even for the simple problem here, the adjoint equa~
tions are fairly lengthy. A solution can proceed by fixing qr(to), guess-
ing values of tf, qy(ty) and q4(ty) and integrating (5.1) and (5.3) forward
in time until t = Tg, At this time, (5.5) will normally not be satisfied
and (5.9) along with (5.1) are integrated backward in_time until t = t,.
The starting values for the adjoint variables at t = tf are calculated

from (3.92) to be

(x _ (L)x _ (1)x _ (1)q _ (1)q _ (1)q _

pV - l, pﬂ - O: Pr = Oa PV - 0: P‘a - O: pr 0

(2)x _ (2)x _ (2)x _ (2)q _ (2)q _ (2)q _

pV - 0: p"a = 13 Pr = O: pV 0’ P's 0’ Pr 0 (5.10)
(e)x _ &®)x _ (@)x _ (3)q _ (3)q _ (®)q _

Pv = O: p'ﬁ = 0, Pr = 1’ pV - 0’ p'ﬁ = O’ Pr - 0-

At time t = t,, the integrated values of the adjoint variables correspond-

ing to the initial values of (5.10) are substituted into equations (3.14a),
which become

(1) 1)q . o 1.
Py zsqv)to +(p8 6q®>t0 + v dtf>_é v Vf)?: |6

) 6q_v> + @3 6qﬁ> +3 dtf>_ = [qs - ef>_ - Ca (5.11)
t to

3)q (3)q . - - .
B o)t ), ek <[ |

Where 0 < Cl’ Cg, C3 1.

fiA
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The right-hand sides of (5,11) represent a fractional portion of the dif-
ference between the desired terminal state values and the actual terminal
state values for this particular integration. Equations (5.11) are solved
for the increments dqy(ty), 3q45(to), dtf and a forward integration is
attempted with new initial wvalues

new old
4, (to) = q,(t;) + 8q (t )
(5.12)
new old
q5(t) = q4(t ) +5q,(t)
and a new cut-off time
new old
tf = tf +dtf. (5.13)

If the fractional terminal state violations have not been reduced by

this forward integration, the increments just computed are reduced by
some factor, say 1/2, (5.12) and (5.13) are recomputed and a new forward
integration is made., This step is done as many times as required to
achieve a reduction in the terminal state violations, (If the problem
has a solution, there will be a reduction after finitely many steps.)

If equations (5.5) are again not satisfied, a new cycle of backward and
forward integration is initiated, the whole process being done as many
times as necessary to achieve convergence, (C;, Cs, and Cz are increased
as the linear predictions become increasingly more accurate.)

The first numerical example considered is that of transferring a
rocket vehicle from a 100 nm (185.2 km) altitude circular orbit to a
300 nm (555.6 km) altitude circular orbit with the earth as the only
gravitational body. The assumed vehicle and earth model parameters are .
given in Table 1.
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TABLE 1

Vehicle

F = 50 1bf
Initial Weight = 500 1bf
Isp = 400 sec

Earth

Radius = 6370 km
GM = 3.98059389 x 10° km3/s2

Practically speaking, the engineering units as typified in Table 1 are
not the best units in which to solve the problem. In order that the
various elements of the terms in the adjoint equations be taken account
of most accurately, it is advantageous to scale the units so that the
problem variables are of the same order of magnitude. Ordinarily this

is accomplished by writing the equations in an appropriate nondimensional
form, Here, however, the nondimensionalized form is achieved by properly
scaling the various input variables., In this way an engineering solution
can also be obtained by unscaling these input variables, A convenient
scaling is achieved by adopting the earth's radius as the unit of length
and requiring GM = 1 in the scaled units. This results in 805,81475 sec
as the unit of time, The vehicle's initial mass can be used as the unit
of mass, With these scaling factors, the initial state is

_ 6555.2 _ - _
r = 223225 =1,0290738, v =+1l/r, = .98577260

1.

3, = 90°, m

The terminal state is

_ 6925.6 _
rp = g5oe = 1.0872214, v

J1/r, = .95904947, = 90°,

¢
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me to be maximized; qy(to) and qu(t,) were kept fixed at q,(ty) = +1 and
qp(to) = +1, The initial values of qy and qg5 were guessed at qy(ty) = +1
and qg(ty) = +1. The cutoff time was initially guessed as .7

scaled units, The C's of equation (5.11) were initially set at .03 and
were doubled or halved as the iteration proceeded according to whether it
took more or less than three forward integrations per cycle to reduce the
terminal boundary violations, The terminal boundary conditions were
achieved to 8 decimal places within 10 trials, Using an integration time
step corresponding tc 20 sec, the Hamiltonian was constant to 5 decimal
places using Runge-Kutta 4th order integration formulas, The final cut-
off time was 1.,3718816 scaled units indicating that the initial guess was
wrong by a factor of ,5, Figure 1 summarizes the control history as the
trials progressed. Figure 2 summarizes the r - v history of the trials,
The converged values of gy and qg were qy (ty) = .38828166 and qa(to) =
-.54702046, Both figures indicate that the initial guesses were quite
bad.

The second numerical example involves this same vehicle in an
escape mission., The initial boundary is the same and the terminal state
was chosen to be rg = 2,0175824, v¢ = 1.6, d; = 45°, mg maximized, The
energy of this terminal state is typical of a low energy mission to Mars,
The initial values of q, and qg were guessed as +l each, and the cutoff
time was guessed as 2,23, The C's were initially set at .,015 and sub-
sequently halved or doubled as before, This time terminal boundary con-
ditions were achieved to 8 decimal places in 18 trials, The Hamiltonian
was constant to 5 decimal places using a time step equivalent to 40 seconds.
The final cutoff time was 4.4778898, while the converged values of q, and
qg9 were qy(tp) = +.23594021 and qg4(to) = -.49928473., The control histories
are summarized in Figure 3 and r - v plots are given in Figure &,

A third numerical example, picked from the literature, is an Earth-
Mars interplanetary transfer mission. Earth and Mars are assumed to be
in coplanar, circular orbits about the sun., Adopting the astronomical
unit as the unit of length, and requiring the heliocentric GM to equal 1
in the scaled system leads to a time unit of 58.13504 days. The vehicle

parameters are shown in Table II. The initial state is r, = 1, v =1,

TABLE II

Vehicle
F = .127 1bf
Initial Weight = 1500 1bf
Isp = 5700 sec
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3, = 90°, m; = 1. The terminal state is rg = 1.525, ve = .8098, 9 = 90°, .
and mg maximized. Again, ¢y and qg were initially set equal to +1 each
and the cutoff time guessed as 1.66. The C's were initially set at
.00015 and the integration time step was set equivalent to 5 days.
Boundary conditions were achieved to 8 decimal places in 26 trials with
the Hamiltonian being held constant to 4 decimal places, The final cut-
off time was 3.3194012 with the converged values of g, and q4 being

9, (t,) = 1.0784030 and qﬁ(to) = ~-,49498598, Typical control histories
are shown in Figure 5, and r - v plots are shown in Figure 6.

The fourth and last numerical example involves launching a two-stage

"vehicle into a low circular earth orbit, The equations of motion are

written in a two-dimensional earth-fixed coordinate system. The earth is
assumed spherical and its atmosphere is modeled by an exponential function.
The drag and 1ift coefficients of the vehicle are assumed to be constants.

The differential equations are

G
]
h
M

[

2
—Ecosa-%cosﬁ+(w' rcosﬁ-gcosa—gsina
m r L m m

%=f2=§v-sina+<;%g-%>vsin73+[£v—cos a-u%sina

(5.14)

|2

wvr sin § - 2(»':)

r=fz=vcos 9
m = f4 = k,
where
= nvd = 2
D = axial force = 1/2 Ca, V' As
N = normal force = 1/2 CnOQVZAsa
p = atmosphere density = poe-Q(r-re)
w' = wcos @ sin A,
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and

Cdo is the axial force coefficient
Cno is the normal force coefficient

A; is the reference frontal area of the vehicle

% is the atmospheric density at the earth's surface

Q is the inverse of the scale height

w is the earth's rotational rate

re is the earth's radius

¢ is the launch latitude

A, is the launch azimuth
and the other terms are as defined in (5.1), There are a total of 17
variables - r, v, 9, m, F, GM, w': P» AZ’ Cdo, Cno, As, pos Q, Tes k, O =
of which 12 (F, @, w', 9, A,, Cdy> Cngs Ass o> Q, Te, k) are known con-
stants, Equations (5.14) determine r, v, 9§, m so that again one free
variable @ is available to minimize the transfer time from the given

initial state to the given terminal state. Using the subscript notation
defined previously, the Hamiltonian (4.24) becomes

- E e 2 D SN g
H=1 + qv <; cos O ;g cos §+ w r cos 9 o cos O o sin OD

F . GM 1 . N D .
+ qﬁ [mv sin O + <§2;g r> v sin 9 + oy o8 Q- v sin O

Zsin 9 - 2w'J + qr(v cos 9) + qm(k), (5.15)
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The Euler-Lagrange equations (4.,26) can be written

. _(_FE GM )
9, (;v-gsina+?4;gsine+rsmﬁ>qﬁ-cos-aqr

A_p
+ [(Cdo cos O + C“o a sin Q) -f—- q,

A p 12
e e amen 2 - gedy]

S (e 1
%"‘rzsm’sqv o r)vcosaqﬁ-!-vsinﬁqr

+| W sin 9 +_________w'2r cos 9
Iy 13

v
(5.16)

. 2GM 20M 1\ v sin 9 (

= - -] = + -
9, I3 cos 9 q, + <—'§;§r T - 9 L{( Cq, cos a

Qv3A p 2 .
. s~ _ a2 w 8in 3
-Cnoa sin Q) >m w'” cos 3§ q_v+{ + (Cnoa cos O

As
Cgo 5in @) Gv?nj)} qa:l

2
A
%=L‘%&§ﬂqv+;%sinaqﬁ+[- (Cg, cos a + Cp @ sin Q) (== )4,

A
+ (- Cdo sin @ + Cnocx cos Q) <jﬁ§> q‘a],
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The control, &, is obtained from (4,27) which becomes

s ZA_p
- E sin @ + L cos O + (Cd_ - Ch ) sin & - Cyp & cos 2
m Q& " o 9 dg Do ) 2m Uy

AN

Ag
+-{}Cno - Cdo) cos @ - Cp & sin Q}-(?EE;- qﬁ] = 0, . (5.17)

Notice that (5.14), (5.16) and (5.17) are identical with (5.1), (5.3)
and (5.4) except for the bracketed terms which represent the effect of
the earth's rotation, the assumed atmosphere and vehicle aerodynamics.
The terminal boundary conditions are given by (5.5), The adjoint equa-
tions are much too lengthy to be listed here. However, the partials
necessary for substitution into their general formulas, (4.10), are
listed in Appendix II.

The vehicle, aerodynamic, and launch parameters are given in
Table III., The formulation so far has not allowed for discontinuities
in any of the variables, and thus is not directly applicable to a vehicle
having stages with different characteristics., The vehicle described by
Table III has discontinuities in thrust and mass at the fixed staging
times which cause the differential equations involving these two variables
to also be discontinuous at these times. However, these types of discon-
tinuities introduce no difficulties since it has been demonstrated in the
literature that the Lagrange multipliers are continuous across fixed stag-
ing times when these times are independent of the state. The Hamiltonian
is discontinuous at these staging times, but the amount is unimportant and
it still is a constant for each stage. The demonstration of these facts is
straightforward and starts by defining functions dependent on the state
variables and time which determine the staging times and the magnitude of
the discontinuities at these staging times. These functions are adjoined
to (2.4) with new Lagrange multipliers, and the integral appearing in
(2.4) is divided into parts over which its arguments are continuous. The
first variation of the new (2.4) obtained is set equal to zero, and an
interpretation of the result yields the preceding statements for the
special case of fixed staging times., The main result of this discussion
is that the solution technique already discussed holds. Care simply must
be taken at the staging points that the discontinuous differential equa-
tions are handled correctly.,
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TABLE IIIL

Vehicle
1st gtage

Initial Weight
F

Staging Time

an Stage (Coast)

F
Staging Time
Weight Drop

1,000,000 1bf
1,600,000 1bf
300 sec
105 sec

0 1bf
115 sec
140,000 1bf

3rd gtage
F 200,000 1bf
ISp 420 sec
Aerodynamic
Ag 25 m?
fo .13133546 (kgm/m3)
Q .13623243 x 10=3  (1/km)
Cdo )
Cng 5
Launch
W .72921157 x 107%  (rad/sec)

g 28,28°

A, 72
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The principal difficulty introduced by adding the atmosphere is the
solution of (5.17) for the control, It has not been mentioned thus far,
but the correct value of & computed from (4.27) is the value that maxi-
mizes the Hamiltonian, This statement can be proven by an application
of the Pontryagin maximum principle or the Weierstrass E-function test.
Since the solutions of (5.4) are periodic with period =x, at most two
solutions are possible in the interesting range -n < @ = n, One of
these maximizes the Hamiltonian, the other minimizes it. For the vacuum
flights (5.4) does indeed maximize the Hamiltonian (as long as q,(tg) > 0).
The situation for (5.17) is quite different. First, solutions are not
periodic with period = (except in the limit for large ). However, there
are multiple solutions in the range -n < o = nt, The details of the solu-
tion of (5.17) will be discussed next.

Equation (5,17) is of the form
(A + Bo) tan o = C + D (5.18)

where A, B, C, D are functions of v, m, F, Cd,, Cngy> As, 9v and qg. The
left-hand side (L.H.S,) of (5.18) is the product o% a linear function and
a trigonometric function. The linear term is called the magnification
factor since (A + Bx) has the principal effect of increasing tan O in
absolute value, A graphical representation of the L.H.S. of (5.18)
divides essentially into four different cases: A = 0, B § 0 and A <O,

B § 0. An important subcase occurs when A + B = 0 and |CQ] = /2 simul-
taneously, A typical representation for A > 0 and B § 0 is showm in
Figures 7a and 7b, A solution of (5.18) is thus represented by the

(b)

Figure 7
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intersection of a straight line (the right-hand side (R.H.S.) of (5.18))
and the dotted lines (the L,H.S. of (5.18)) in Figure 7. Depending on
the values assumed by C and D, there are at most four solutions., Further,
there are at most two solutions per quadrant. Notice that always there
are two solutions., The special case A + Ba = 0 and lal = 5/2 requires
special treatment, Taking @& = -n/2, then A + B(-n/2) = 0, implies

A = B(x/2)., Therefore, (A + BQ) tan Q becomes

B<-2’5+a tan Q.

This is an indeterminant of the form 0 « -» as

a—')-%t-

However, its limit does exist and is evaluated by L'Hospital's rule as
follows:

B(-g-+a>
lim B(-’Z-‘-+a tan @ = lim —_————L = 1im B
o N P A -
a—>--§- a-—->-—2- a—>-T sindx

= - B lim sina = ~ B,

A similar evaluation for

41



yields

Thus,
B<—’2‘-+o¢>tanoc

possesses a removable discontinuity at o = -xn/2 and

bie
B <? + &) tan O

is continuous everywhere in [-wm, 0]. Thus, Figure 7a would become Fig-
ure 8., A similar result would hold for Figure 7b. The conclusions
from Figure 7 still hold., A solution of (5.17) proceeds on the basis of

Figure 8§
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these conclusions. OH(X)/ox, i.e., (5.17), is evaluated at increments

of n/2 in the range [-n, n]. If its sign changes at the end points of
any of the subintervals, a root exists within this subinterval. If the
sign of OH/Ox does not change, the sign of OH(()/O0Z is examined. If

it changes, there are two roots in that subinterval. These two roots

are placed in appropriate smaller subintervals by evaluating OH/dx within
this subinterval, A modified Newton-Raphson procedure is then used to
find roots within the intervals in which they have been isolated. The
modification is as follows, The normal Newton~Raphson iteration for a
root has the form

The modified form is

oH_

Ban
@ g =0 - KiKp T

oo

where K; = #1 and 0 <Ky =21, K; and K5 can be given geometric interpre-
tations, but it will suffice here to say that Ky limits the sequence of
O's to lie within the interval the root has been isolated within and K;
causes the sign of the derivative to agree with the sign of the finite
increment slope found in the process of isolating the root., In this
manner, all the roots are found in the interval -x < ¢ £ n. Each is sub-
stituted into the Hamiltonian and the one maximizing H is picked as the
control, A typical variation of H(x) is shown in Figure 9., In use,
the foregoing procedure is very rapid and the three roots indicated in
Figure 9 would be found to eight significant figures in four or five
iterations per root,

The mission for the two-stage vehicle described in Table III is the
attaimment of a circular orbit at 194.6 km altitude. Using the scaling
given in the first numerical example, the initial state is r, = 1.0004223,
Vo = .020240245, 9, = 6°, and w, = 1, The terminal state is rgy = 1.0305494,
vg = .98506657, 98¢ = 90° and wy maximized, The initial values of q, and
qg were guessed as +.1 and 0, respectively, and the cutoff time was guessed
as .67, The C's were initially set at .0001, Terminal boundary conditions
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Figure 9

were achieved to 8 decimal places in 29 trials with the Hamiltonian being
held constant to 5 decimal places. A time~step equivalent to 10 seconds
was used, The final cutoff time was ,7906737, and the converged values
of q, and q4 were qy(ty) = .074358687 and qg(to) = .0032090726. Control
histories are given in Figure 10,and r - v plots are shown in Figure 11,

VI, CONCLUSIONS

The adjoint method has been shown to be a powerful tool in the solu-
tion of two-point boundary value Problems. In particular, for variational
problems treated via the Lagrange multiplier technique, solutions are
freed quite drastically from dependence on the initial multiplier values,
With respect to the numerical examples of the text, the number of trials
necessary for convergence in the second and third examples could have
been easily cut in half by guessing even remotely reasonable cutoff
times, For the atmospheric example, the number of trials could have been
reduced considerably by using a smaller time step in the integration
algorithm since terminal boundary conditions had been satisfied to 2
decimal places after 15 trials. Generally, the convergence process pro-
ceeds more rapidly the smaller the integration time step. This is because
the influence functions are obtained more accurately. The time step required
for accurate forward integration is generally not the same as that for accur-
ate backward integration., There is a trade-off between how accurately the
influence functions need to be obtained to solve the problem and how many
trials are required, Usually, the time-step for a backward integration
needs to be smaller than for a forward integration for equivalent degrees
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of accuracy. Two disadvantages of the adjoint technique are the slight
programming problem caused by the backward integration and the time
penalty incurred, because the state equations must be integrated back-
ward as well as forward (or their forward values saved on tape and then
interpolated during the backward integration). An almost one-third com-~
putational time saving can be achieved in launch and ascent problems by
using velocity as the cut-off criteria., Velocity is an acceptable function
for this purpose since it is usually a monotonically increasing function
of time in this type of problem,
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APPENDIX I

In the ordinary differential calculus, the notation dy denotes an
infinitesimal, i.e., a change in the variable which can be made as small
as desired. 1In the calculus of variations, By denotes an infinitesimal
change in the function y; i.e., By is a variation of y(x). If the original
function is denoted §(x) and the changed function denoted y(x), then
y(x) = y(x) + 5y. The change (variation) can be made more explicit by
saying y(x) = §(x) + k@(x), where k is an arbitrary constant and @(x) is

independent of k and continuous over the same range that y(x) is continuous.

For example, the straight line y(x) = x, 0 S x £ 1, can be deformed into
the parabola y(x) = x=, 0 Sx S 1, by defining #(x) = x - x. Then,

y(x) = x + k(x® - x). Thus, when k = 0 the original function is retained.
When k = 1, the varied function is the parabola. This little example
illustrates how a given function can be deformed into another given
function. 1Ideas are fixed more firmly with the following definitions:

Def. 1 Let y(x) and y(x) be uniformly continuous functions in the
interval xpo £ x = x;. Then y(x) is said to lie in a strong
neighborhood N. of §(x) if and only if for every ¢ > 0,
lyx) - 5&) | = e.

Def. 2 Let y(x) and y(x) be differentiable, uniformly continuous
functions in the interval xg = x £ x;. Then y(x) is said
to liein a weak neighborhood N of §(x) if and only if for
every € > 0, ly(x) - §(x)| % ¢ and

I yeo - L5 s

Strong variations are associated with Def. 1 and weak variations are
associated with Def. 2. Futhermore, variations are (1) special if the
independent variable is not varied and (2) general if the independent
variable is varied. Almost exclusively special, weak variations (although
very often this is not stated explicitly) are used in deriving the neces-
sary conditions for extremals in the variational calculus.

Now consider a function of more than one argument, say 8x, ¥15 «v-»

Ym > i{, ey i&), where ii = éi yi. Consider the effect of replacing

each of the arguments by its varied value; i.e., ¥ is replaced by
yi + kfj(x), ¥; is replaced by §i + k¢i(x), etc. If {(x, ¥y, .

7 2 cey ;’m:
Vis «ev» y&) has a series representation, then

EGes §1 + ki, FL o+ kA = L0, o, D+t L et L

1 n
+ ~ 3¢ + ...,
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where 8¢, 82f, ..., 8%¢ are the 15t, 2Pd  ang nth

symbolically

variations of ¢ and

o '
5C=<k¢j§ +k525j£—3>§,
j i

2
%) o)
62g=<k¢. —  + kg _> ¢
i Ne 3Nt ’
d v d Y
sht = <kg5- — + k@i — t.
i e NN
% 5 F;
Substituting successively y;, ..., ¥, ;l, cees ;m for € yields
&y, = k& 8y, =0 ... &%, =0
5m = ki 89, =0 ... &%, =0
55, = ki 5%, =0 ... 8%, =0
m = ki 8y =0 ... Y, =0

from which follows easily that 6§j = kbj = j% (kQG) é% (5§j)-

When the end point of a variational problem is not fixed but instead
is allowed a general variation, the total change in the end point value
is found as follows. Referring to the drawing, y(t) is the varied curve
and §(t) is the original curve; J(t) must be extended over the interval
At.  Then, since y(t) and y(t) are assumed differentiable,
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R Y(')

<=5

l t
+ + - {
to to+at

y(ty, +At) = y(t,) +y(t,)) At + e/ (I-1)

where 1lim ¢ = 0.

N - 0

Since Def. 2 holds,

l5(to) - F(tx) | < e

or

7(to) = ¥(to) + e (1-2)

where 1lim e, = 0.

Substituting (I-2) into (I-1) yields

y(to + At) = y(ty) + F(ty) At + (& + €5) At.

Adding and subtracting y(ty) yields

y(ty + &) = y(ty) - F(ty) + F(t,) + F(ty) At + (6 + ) A
or

y(te + AL) = F(ty) = 8y(ty) + §(t,) At + (e + ) A, (1-3)

where By(ty) = y(ty) - ¥(ty) by definition.

(I-3) shows that the principal
part of the total change in the end point is

by = y(to + At) = §(to) = By(ty) + y(to) At.
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APPENDIX II

The differential equations for the influence functions are obtained
by substituting the following partials into (4,22) and (4.23):

av=(C cos &+ C asina)—A—s—-
v do €O Do m /°

g—;-:%sin 3 - w'zr sin 3,

2
. A
Bv___gg‘l_cos 3+ (C4. cos o+ Cp & sin Q) 2) + W' cos d.
ot o Do 2m

2

. A
ov F a . s
- - ——9%3— + (Cd, cos a + Cn, & sin o) “omZ /)

2

A
%= -Esina"'((cdo - Cp ) sin @ - Cp O cos oz)(vz:p).

%z-(mv—ggsina+;%gsinﬂ+%sin ﬂ)‘[(cdo sin @ - Cp X cos a)&z)

W' 3r sin 3
L LS
v

2
r cos 9
.

5':‘)_ GM 1 w*
85—(;?-;>(Vcos'ﬂ)- v

%:;5_ - <%%2 ) %) <v si.n 6) ) [w'z vsin 3, (Cp 2t co8 @ = Cg sin Q) Cv:‘))].
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A
s
F . .
mdialialienw sin o - (..Cd0 sin o + Cnooc cos Q) <%FE>

%g-‘=-§v—cos Oé+<(Cno-Cd)C°S a'Cna31na><vm>

E-o
%
O°H

=k - £ osi + c - 2C cos O
——Ecosotq_v mvSJ.nocqﬁ [(do no)

2) -

+ Cp @ sin a>(" Sp>] 4, + \_((Cd - 2Cp ) sin ¢
T \_ 2m o o

-Cnacos O!><v >}qﬁ
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82H=_Fcosa -[(C - Cq) sin o+ Cn o O!—A§—
R p—i 4y = [\ Cnp = Cag) st n O cos - q,

P 12 .
+ l: (Cno - Cdo) cos O - Cnooc sin oc) (Azi > + & rvszm «9] qa'
\

PH _ [(2F . 26M . ) s
-a-v—z— m-vjsmoz+;g‘-,§-smﬁ qﬂ- (Cdo cos oc+Cn°oc sin Q) m) qv

2 -
2w' r sin 9§

- - qﬁ'

1 w' 2r cos 3§

52H=_ GM+— cos 3 q, - sin § q + =50 g
S (&P s . T gend

£ i A
g?jg - (2, %) (%ﬁ) q,+ [(Cdo cos O + Cp @ sin Q) m89>] 6,

r

AP o Z sin 9
+ {(Cdo sin @ - Cp @ cos Q) o > + = :' a

H__
S35

2 2Ap
%& = [ (Cno - Cdo) sin @ + Cnoa cos a> (\szms >] 0

Asp
+ [((Cdo - Cno) cos & + Cp @ sin O¢> (\Q:m >] a4
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PH _ oM M 1 i 2
W=?cosﬁqv- =2 " T vsmﬁqﬁ-vcosﬂqr-w'rcosﬁqv

12 ]
w r sin 3§

+ V q'a.
O°H _  26M . 2GM 1 v _cos 2 . w?Z cos 9
Soor -~ r2 sindq, - (7T - r Ay - W sindq, - v

O°H _  6aM 6GM 2 .
ryh rﬁr—cos~8qv+ =Rl vs:.nq‘)qﬁ- (Cdocosoz

2v‘2A8p 2vA o
+ Cnooz sin Q) <Q—-—->] q, - [(Cd sin @ - Cn o cos Q) <Q \ﬂ
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